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I ABSTRACT

Results of a spark chamber experiment on elastic scattering of pions on

protons are presented and analyzed. The processes studied were p at 2.92

GeV/c, and $ p at 3.15, 4.13, and 4.95 GeV/c. The data are fit to an ex-

ponential function of the four-momentum transfer, t, in several different ways

in attempts to explore systematic energy and angular dependences. No shrink-

Iage of the diffraction peak is seen in comparing the coefficients of a linear
exponential fit for < 0.4 (GeV/c) ; at larger , however, the cross

section falls off with increasing energy. The large angle differential cross

Isection is examined for structure, and is compared with all other large

angle scattering data. The results are compared with proton-proton scat-

tering data over the same energy range and substantial differences between

Ithe two processes are evident.
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I. INTRODUCTION

g This paper reports the results of measurements of the elastic differen-

tial cross section of n- mesons on protons at 3.15, 24.13, and 4.95 GeV/c,

and of n+ mesons on protons at 2.92 GeV/c. These measurements are compared

with other published pion-proton elastic scattering data at similar and

higher energies and with proton-proton elastic scattering results. The rel-

I evant theories are reviewed and examined in the light of these data.

g The results of the measurements of the diffraction-peak part of the dif-

ferential cross section have already been reported.' They were interpreted

with respect to the Regge theory of elastic scattering and the conclusion was

that although the diffraction peaks had, at least approximately, the pre-

dicted exponential behavior, there was little or no evidence for the predicted

Ishrinking of the g- p diffraction peaks with increasing energy. Higher-energy

measurements of the g- p elastic diffraction peak2 subsequently corfirmed the

non-existence of the shrinkage. Section V of this paper is devoted to a

I further discussion of the diffraction peak results, mostly with respect to

jthe precise shape of the diffraction peak.

- This experiment used thin-plate spark chambers and a liquid hydrogen

target and was carried out at the Bevatron of the Lawrence Radiation Lab-

Ioratory. The apparatus and method of analysis are briefly described in Sec-
tion III. In Section IV completely analyzed results of the experiment are

tabulated and plotted. Section VI is devoted to a discussion of the large-

1f angle scattering, for which only very preliminary results have been pub-

1



lished.3  In Section VII pion-proton and proton-proton scattering are com-

pared and discussed. Throughout this paper, all kinematical quantities and

differential cross sections are in center-of-mass systems; energies are given

in GeV, momenta in GeV/c, distances in cm, and wave numbers in cm"1 unless 4
otherwise indicated. An exception is the laboratory momentum of the inci-

dent pion which is used to specify each of the four sets of data.

Before discussing specific theories, it is useful to recall the features

of high-energy pion-nucleon elastic scattering. The first distinctive feature

of pion-nucleon elastic scattering when the laboratory momentum of the in-

cident particle is above 2 GeV/c is a narrow forward peak which contains al- -

most all of the total elastic cross section. This same feature occurs in -,

all other instances of high-energy elementary-particle elastic scattering

which have been measured thus far: for example, p p,",5 T p,6 and K+ p.7

The second distinctive feature of pion-nucleon elastic scattering is char-

acteristic of all other measured system as well: the total elastic cross

section is a rather slowly varying function of energy compared with any

particular inelastic channel. As examples of these features at 5 GeV/c,

the n- p differential cross section, which has a value of about 30 mb/sr

in the center-of-mass system at 00, drops to one-tenth of its value at 210 II
and to one-hundredth of its value at 320. Furthermore the forward peak

contains at least 95% of the total elastic cross section up to 320. The

total elastic cross section at 5 GeV/c is 6.5 mb, whereas at 10 GeV/c it is

4.6 mb.8  This forward peak may be interpreted as diffraction scattering,

noting that in this range of momenta the wavelength of the pion is of the

2
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order of or less than the nucleon radius. The diffraction peak follows clas-

sically from the imaginary scattering amplitudes corresponding to the various

inelastic channels.

While the diffraction analogy Justifies the existence of a forward

peak, it does not explain the very small elastic differential cross section

at large angles; that is, it does not explain why almost all elastic scat-

I tering is diffractive. An admittedly weak explanation is that as the energy

j increases substantially the total cross section of any particular channel

usually decreases rapidly. There is nothing special about the elastic chan-

Inel, and therefore its total cross section should decrease rapidly, except
that the diffraction requirements "force" the elastic scattering to stay

large in the forward direction. Part of this argument is made explicit in

Ithe "statistical model theory" of large-angle scattering given in Section
1II.

Most of the theoretical work has been concerned with the diffraction

region, where data are more abundant and theoretical treatment is more

straightforward. Convenient kinematical parameters for describing the proc-

ess are s, t, and u, defined as follows in terms of incident pion and proton

four-momenta, ql and p1 respectively, and of the corresponding outgoing four-

1L momenta, q2 and P2:

.s = (pl + ql) 9

t = (PI " P2 ) 2  (1)

u = (p].- q2 )2

1~~ 31



1
The variable s is the square of the total c.m. energy; and t is the square

of the four-momentum transfer, given also by

t = -21,q 2 (1 - cos 9) , (2)

where q is the three-momentum and e is the scattering angle of the pion. For

purposes of discussion we designate the diffraction region as the range of

e for which Itl < 0.8 (GeV/c)2 . While no break in the cross section exists "

at this value, it is found that almost all of the forward elastic peak is

included in this t-region and that the diffraction region theor1ies are ex-

pected to hold best for this region. When comparing the pion-proton with the

proton-proton system we shall use this same separation point.

A large-angle scattering region of particular interest which occurs in

pion-proton and other elastic scattering of unlike particles (but not in

proton-proton scattering) is the region near 9 = 180*. As described in Sec- -

tion II, this region is supposed to be dominated by processes completely

different from those which produce the diffraction peak. There has been

particular interest in the possibility of a backward peak'near 180*.

4T

II. THEORIES OF PION-NUCLBON ELASTIC SCATTERING

A. General Consideration

1. Isotopic spin dependence.--Pomeranchuk9 and others have shown that

as the energy increases, the total i+ p and 7 p cross sections should be-

come equal. There is no proof that the total elastic cross sections or the 11

4I
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differential cross sections should become equal, but all the theories of

scattering outlined below indicate strongly that the diffraction scattering

should become independent of isotopic spin. This is probably not true for

ii large-angle scattering, particularly for the 180* region where the major

differences discussed below might be expected to occur.

2. Forward elastic scattering.-The scattering amplitade is defined by

do () = If(Gs) 2  (3)
- da

and the optical theorem states, neglecting coulomb scattering,

L
Sf(g) = k (4)i 4- 0 tot'

where k - / . Then

do () = IRe f() 12  atot 2 (5)

It is usually assumed from rough measurements and from calculations using

forward dispersion relations that the Re f(s) is small compared with the

Im f(s). This assumption will be tested again with the present data, but

most of the diffraction theories are based cm apurely imaginary value of f(@).
i"

B. Theories of Diffraction Scattering

1. Optical model. -The partial wave expansion for the scattering amp-

-i litude is
O

f(G) 1 (21+l)(l-n.)P1(cos e) . (6)
2ik

1=0



The simplest derivation of the diffraction peak is then obtained (as shown

in the Appendix) by setting

L = kR '

=a 0 < I<L

and

11 = o> L, (7)

where a, which is real and less than 1, is the amplitude of the transmitted

wave from a unit incident wave. The quantity (1-a) is then the "opacity" and

R is the radius of the proton in this simple model.

The following results are obtained for the diffraction region: -

f(G) = (l-a)kR2

2

da (9) = (1-a)2 R) 2 F1ikR)1 2 (8)

'tot = 2i(l-a) R2

Although a more sophisticated optical model can be made,10 we will use only

the simple Eqs. (8) since our primary purpose is to compare the fitted pa-

rameters R and (1-a) of the p p diffraction peak with those of the g p dif-

fraction peak.

2. Theories based on the Mandelstam Representation. -All relativistic I
and field theoretic descriptions of elastic scattering have come at least

partially from the Mandelstam representation. The basic idea, that the

scattering amplitude is to be derived by studying the singularities in the

cross channels which are the pion-pion system, has been discussed in detail

6
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by Chew. 1 1  Diffractive scattering in terms of the singularities of the pion-

pion system alone has been studied by a number of authors. 12 13  The general

reasoning is based on the fact that the diffraction peak occurs at small

j negative values of t and the pion-pion singularities occur at small positive

values of t, whereas the crossed-channel pion-nucleon singularities occur at

very large negative values of t. The supposition is then made that the dif-

fraction peak can be understood in terms of closely-lying pion-pion singu-

larities. We may replacc f(e) by f(s,t) and factor out the t = 0 behavior

of f(s,t) so that

[f(s,t)]2  = [f(s,O) 12 )]2

d Lf( s,o)l

Setting f(s,t)/f(s,O) = F(s,t) yields

d f(s,O)2 F(s,t) (i0)i dO

Finally,i2
do da (11)
dn r dt

so that

da [ __ If(sO) 2] F(s,t) = - a~) F(s,t) (12)

dt [7l

The high-energy approximation Re f(s,O)= 0 and Eq. (5) yields

d = F(s,t) (13)
dt 16 n~ i

Now the observation of high-energy diffraction scattering has shown that

7



F(s,t), i.e., the shape of the diffraction peak, is not very energy-dependent.

Therefore the aim of relativistic diffraction theories has been to produce

an F(s,t) in which the s-dependence is small and the t-dependence not only

fits the data but has some justification from the Mandelstam representation.

This has been done by Amati et al.,12 and by Lovelace. 13 With our data the

s-dependence can be only roughly examined, and we will confine ourselves to

the simplest Regge theory in examining it. Even if the Regge theory were not

right it would still provide a convenient way to parameterize the s- and t-

dependence of the elastic scattering.

3. The Regge theory.-According to the ideas of Chew and Frautschi,14

Frautschi et al.,l  and Drell,16 pion-nucleon diffraction scattering may be -

explained by the P (Pomeranchuk or Vacuum), P' (Pomeranchuk prime), and p

trajectories. The scattering amplitude for large s and small Itl is written

f(s,t) = i ai(t) (S/So) t (14)

8', f s i

where the i sums over all the trajectories. While this f(s,t) has a limited [-

type of s-dependence, there are too many unknown functions to allow testing

of the theory by present diffraction data. Thus Eq. (14) could fit almost

any data.

The applicability of the simple Regge theory to the diffraction scat-

tering problem has recently been brought into serious doubt, not only by

high-energy elastic scattering data2 but also by unpublished calculations

reported to demonstrate the existence of cuts in the complex a (angular

momentum) plane. H.
8

117



The number of unknown functions can be reduced by assuming that at

large s the P trajectory is the most important one since for small Iti,

a p(t) is larger than other ai(t). Keeping only the term containing the

next largest a, say a1 , we may write

f(s,t) = 1 [p(t)(s/SO) P(t) + 03(t) (S/o)al(t]

f(s,O) 1 ) p(O)(S/So)P(O) + Pl(O)(B/o)a1(O

Assuming cp(O) = 1, the first two terms in F(s,t) are

113it 12 -2 2Re [1p(t)P*3(t)]I(/ a~t+pt-
F( s, t2) Bpt) 2ap(t) -2s~t ~ () (/So) f+ R[pt ~ ( S/so) a(t) +Sp(t) -2

3(O)+L I P(O) I2 .(16)

Lacking knowledge of the 0(t), these two terms can be separated only by their

s-dependences. However, the observed s-dependence of F is small. This

F(s,t) may be rewritten making use of the following assumptions. Consider-

ing ap(t) = a1 (t)+A, Eq. (16) can be factored to the following functional

form:

~2

F(s,t) _ (S/So) [l+g(t)sA] . (17)
f( 0)

In the case of the P' trajectory, A is presumed to be about 0.5. Thus, al-

though it is predicted that the diffraction scattering peak due to the

Pomeranchuk trajectory will shrink with increasing energy, the situation may

be altered by the presence of terms from other trajectories. Only the lead-

ing term will be kept in the following discussion, although the parameteriza-

tion of Eqs. (16) and (17) should be borne in mind. This same point has

9



been made by Hadjioannou et al., 17 in discussing the t-dependence of p p dif-

fraction scattering.

Continuing with the Pomeranchuk trajectory alone, we may drop the sub-

script P and write 4
do 1 (t) 12 ( so 2a(t)-2 (18)
dt =  t=O 0(0) I

For small It I, the experimental data are well fit by

d (da exp[A(s)t] . (19)dt at t=o i
Thus, if

a(t) = l+a'(O)t, and P(t) = P(O) exp[-t].

we may write

dt t =exp 7+2a'(O)Inq)t] (20)

where II
y T1 - 2a 1 (0) Ins0

C. Theories of Large-Angle Scattering

1. The statistical model theory. -Fast et al.,18 have calculated the

cross section for elastic scattering with the scattering considered as just j
one of the many final-state channels occurring in the statistical model of

high-energy elementary-particle collisions. The statistical model is con-

cerned with central and not with peripheral collisions. Therefore it may I
10 i0 t
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J yield that part of the elastic cross section which is not given by the dif-

1 fraction theories, all of which are concerned with peripheral collisions.

In effect, the statistical model assumes some probability for a "time-like"

1. intermediate state: an excited or "compound" nucleon. This is in contrast

to the "space-like" intermediate state, or propagator, of peripheral models.L
Time-like intermediate states appear to be a valid physical concept at en-

ergies below 2 GeV (the resonance region). The question of the validity of

the statistical model may be interpreted as asking whether the probability

for the formation of time-like intermediate states falls off only slowly

. with increasing energy and whether it is through these states that some rare

final states, such as large-angle elastic scattering, are reached at high

energy. Fast et al., 18 find that the total non-diffractional cross section

I. decreases exponentially with increasing center-of-mass energy, according

to the exponent (-3.17 Ec.m.). They assume the angular distribution to be

isotropic in the center-of-mass system.

1- 2. Backward peak from partial wave expansion. -Blokhintsev 19 has shown

how the same assumptions which lead to the diffraction peak also lead to

a peak at 180*. We have given an alternative derivation in the Appendix,

I where we show that if

' = 1800-,

then

da (e') = (1-a)2 R2 [B(kRe,) ]2 (21)
d11



where B(kRO)2 is a function plotted in Fig. 1 for comparison with the dif- fl
fraction-peak function (J(kR)/kR9]2 . The ratio of the backward-peak height

at 180* to the forward-peak height at 0* is l/k2R2 , and since kR is the max-

imum angular momentum L which enters the reaction, the backward peak is 
1/L 2

times the height of the forward peak. Since L = kR at, say, 4 GeV/c _9 10, i

the backward peak predicted in this way is quite small in comparison with the

forward peak. The total backward elastic scattering cross section in this 1
peak is

aelastic backward peak = "78(1-a)2 2  (22)

Thus this theory predicts a small backward elastic peak whose total cross

section goes inversely as k2 or approximately inversely as s. We shall ex-

amine the data with reference to the existence of such a peak.

3. Backward peak from a neutron or nucleon isobar pole. -As stated

earlier, in principle the elastic scattering near 180* should be calculable

from singularities in the cross pion-nucleon channel. The relevant rela- .1

tivistic invariant is now u, where

u = (_mM2 2 Ill 2 (l+cos e) (23)

Here M is the proton mass and m the pion mass. It will be noticed that un- j
like t, which is 0 at 9 = 0 and is always negative in the physical region,

u = (M2-m2)2/s at 9 = 1800 and is negative only for I
Cos 9> -1 (24)

12



I

j Singh and Udgaonkar20 have discussed briefly the backward peak to be expected

on the basis of the strip approximation to the Mandelstam representation.

They estimate that the width of the peak in terms of u should be about four

times the width of the forward peak in terms of t. At 4 GeV/c the half-width

would be 0.4 (GeV/c) 2 in terms of u or 0.12 in terms of cos Q.

Several authors have conjectured that T+ p elastic scattering near 180*

might be attributed mostly to a neutron exchange (Fig. 2a). If this very

simplified way of using the singularities of the cross pion-proton channel

is valid, A- p elastic scattering near 1800 might be attributed mainly to

the exchange of the 3/2, 3/2 nucleon isobar (Fig. 2b). In these surmises the

hope is that higher-order diagrams such as the 3/2, 3/2 isobar for 'r+ p and

Fig. 2c for both ,f+ p and A- p will not change the result much. But Cook

et al.21 have shown that in i+ p, 1800 scattering the calculation based

i solely an neutron exchange gives the absurdly large answer of 90 rob/st.

Clearly, then, the other diagrams must be considered. No one has found spe-

cific means of doing so, but an unpublished calculation of Pomeranchuk
22

gives the n+ p, 1800 differential cross section as about 1 mb/sr. We will

compare this prediction with our data, although the means of calculation is

not known to us.

4. Egge theory for large angles. -The differential cross section at

large Itl values can be fitted by Regge trajectories in the t-channel because

as shown in Eq. (17) there is considerable freedom in the large Itl predic-

tions. The question arises of how the amplitudes from the t- and u-channels

can be combined if the values of u are of the same order of magnitude as the

13



values of t.

One solution is to follow Drell's suggestion16 and assume that the amp-

litudes from the u-trajectories are very small in comparison with those from

the t-trajectory. Here we are saying in another way what was said in the i
last section: from the standpoint of both Mandelstam theory and Regge theory,

.A

the u-channel somehow contributes very little to the large-angle elastic

scattering, except perhaps near 1800. Therefore we will continue the s,t

parameterization discussed in Section II.B.4 into the large-angle region,

out approximately as far as Iti '! 2 GeV/c. In the proton-proton case the

shrinkage of the forward peak is most apparent at large t-values, which are

outside the diffraction region. We shall see if this is also true for the

pion-proton case.

One may explore the contribution of u-channel trajectories near =.

1800. In particular, translating the discussion of Section II.C.3 into the

Regge language, in n+ p, 1800 scattering we would hope to investigate the

Regge neutron trajectory. I
The kinematic relation (24) causes a difficulty in the Regge treatment j

of the u-channel. The basic idea of the Regge theory is that the cosine

of the scattering angle in the cross channel should be much greater than 1. 1
For the t-channel, j

cos Gt + 1 + s-[(t/4-m2)i/2(t/4M2)i/22 (25)

2(t/4-m2 ) 1/2( /4_2) 1/2

In the forward peak, s >> t and thus cos t > > I for s >> Mn; but for the

u-channel,

14
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Co O* - + 2[su.(m2.M2)22] (26)

At u 1.j2(u-m2.M
2) 2-4m2M2]

At u = (M2 -m2 ) 2 /s, i.e., at 9 = 1800, cos @u = -1 for all s, and at u = 0,

[ cos Gu = +1 for all s. To obtain a "large" value of cos Ou, say 3 or 10,

-. requires a fairly large value of lul as given in Table I. Now the Regge

theory gives a simple forward-peak prediction, once the Pomeranchuk trajec-

h tory is taken as dominant, because for small Jti, ap(t) can be taken as

linear and the theory holds best at t = 0, which corresponds to G = 0. But

in the backward hemisphere there is the ambiguous region extending from

9 = 1800 to the angles listed in Table I at which cos 9u becomes large; and

this includes the region of small u, where the Regge theory would otherwise

be most applicable. Therefore Regge predictions of a backward peak, inter-

I. pretable as a nucleon or nucleon isobar trajectory, are vague. In partic-

ular, predictions of the s-behavior, analogous to the predicted shrinkage

with increasing s of the forward peak, seem difficult. It is only at en-

1- ergies much higher than those in this experiment, i.e., cases in which the

hambiguous region has shrunk considerably, that the Regge predictions become
clearer. Therefore in spite of the great interest in finding an effect of

the nucleon or nucleon isobar Regge trajectory at 1800 pion-proton scatter-

ing, our data force us to ignore this question unless the Regge predictions

are clarified.

I.
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III. APPARATUS AND METHDD OF ANALYSIS 1
The pion beams were obtained from the Bevatron of the Lawrence Radiation j

Laboratory. The i- beam was produced at 00 inside the Bevatron magnet and

the n+ beam was produced at 260 in a straight section. This large produc-

tion angle limited the maximum n+ momentum to 3 GeV/c and led to difficulties I
in normalization of the g+ data due to proton contamination of the beam. The

momentum spread of the beam was ±3% at half maximum for the n- p and some-

what larger for the A+ p.

Figure 3 shows a schematic horizontal view of the equipment. 23 The two

small spark chambers 1 and 2 measure the angle of the incident pion. The

double spark chambers 3, 3' and 4, 4' measure the angles of tracks going out

the sides. The spark chambers 5 and 6 are spaced 2 ft apart in order to

give a good angular measurement of forward-going particles. The scititilla-

tion counters in Fig. 3 were operated in coincidence circuits so that a sig-

nal had to be received in coincidence by at least one left-hand and one right-

hand counter in order to pulse the spark chambers and record a photograph.

Using a combination of mirrors, the vertical and horizontal projections I
of the tracks in all spark chambers were imaged onto a single 35-mm film

frame. A typical elastic scattering event is reproduced in Fig. 4. Since

the counters were designed to accept particles from every point in the target I
making an angle of ±150 with the horizontal plane, the photographs generally

show at least two roughly coplanar tracks. Within wide limits, all events

showing just two outgoing particles, A and B, were measured to determine

angles and intercepts of the tracks A and B as well as of the incoming pion

16



[track, n. These measurements were then processed by a computer to select

elastic events according to criteria of coplanarity, vertex fit, and agree-

AA A
ment with elastic kinematics. If we let n, A, and B be the unit vectors in

the direction of motion in the laboratory of the incident pion, particle A,

and particle B respectively, then the degree of coplanarity is defined by the
$ A A

angle $ where sin = .(A x _)/I_ x AI. Given that GA and GB are defined

from cos GA = _-_ and cos GB = 1A- the degree of conformity of @A and GB

with a particular kinematic curve is measured by the distance D in degrees,

defined as the perpendicular distance of the measured GA-GB point to the

particular kinematics curve, as shown in Fig. 5.

Of course the precision of the angular measurements is limited by finite

spark width, multiple scattering, optical distortions, etc., so that non-

zero ranges of $ and D must be allowed. If these ranges are made too small,

real two-body final-state events will be excluded. If these ranges are made

too large, final-state events of three or more bodies may have too large a

probability of acceptance. The elastic diffraction scattering has a large

total cross section, several mb in this momentum range; and for these small

angles the background-event contamination was negligible. Therefore the

diffraction scattering data were used to determine the ranges of $ and D.

We found that both $ and D fit a normal error curve with standard deviations

of O.4* and 0.6* respectively. These directly-measured standard deviations

in $ and D agreed with those calculated from the standard deviations in the

direct angular measurements. Calculations also showed that j and D standard

deviations were almost independent of GA and GB, and could be used in con-

17



I
siderations of large-angle elastic scattering when the background was impor- I
tant. Because of the loose criterion used in selecting events for measure-

ment, events were obtained not only near the kinematics curves of interest

but for a wide range of values of eA and GB" This gave a distribution of I
background events in the GA-GB plane which was found to vary slowly. If one

considers an arbitrary line in the GA-GB plane, the background events which

lie within one standard deviation in D of this line and are coplanar to within

one standard deviation in V yield an average background cross section of .004

mb/sr. This, then, determines the lower limit to detection of the differen-

tial elastic scattering cross section in the present experiment. As will be

seen in Section IV, the large-angle scattering cross sections are very small,

and this background is the principle source of the errors quoted.

The large-angle cross section was determined as follows. For a partic-

ular range of cos G along the n- p kinematics curve, all events coplanar to

one standard deviation in V and within six standard deviations of D on both

sides of the n- p curve were collected. The events were distributed into

equal intervals in D and a weighted least squares fit was made using the num- j
ber of events in each D interval as the measured observable and D as the in-

dependent parameter to the equation of a linear background plus a gaussian I
distribution of elastic events around the kinematics curve. The errors were j
then increased over counting statistics by a factor proportional to the

square root of X2 24 for the fit as described above. This factor was typ-

ically between 1.0 and 1.5. j
The data were corrected for the nuclear interactions and multiple scat-
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[tering of the recoil particles in the target, spark chambers, etc. The ef-

fective j angle subtended by the coplanarity counters was evaluated as a func-

tion of GA and eB averaged over the target volume for the different GA and

OB relationships for each incident beam momentum. The effective target length

corresponding to the different scattering angles was also computed and used

with the above factors to convert corrected numbers of elastic events to dif-

[ lferential cross sections. The results and errors presented here for large-

angle scattering differ from those reported earlier1 primarily as a result

of the explicit analysis subsequently performed.

The following data sample is drawn from over 50,000 photographs and cor-

responds to from 1500 to 1800 elastic events in each of the four data sets.

IV. RESULTS

i2
The results are tabulated in terms of da/dII(mb/sr) and (da/dj/(kat/4,r' 2

versus cos e and t in Tables II through V. The errors given are statistical

except for the large-angle points, where the statistical errors are scaled

up somewhat, as discussed in Section III. In addition to the quoted statis-

tical errors there is a normalization uncertainty in the ," p data of ±8% and

in the g+ p data of possibly +30% (due to uncertainty in the proton contam-

ination of the 
n+ beam).

The data are plotted in Figs. 6 through 9 on a semilogarithmic scale

versus t. The energy-independent exponential character of the diffraction

peak is readily apparent. At 3 GeV/c there is some contribution to the
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elastic cross sections out to rather large angles (large It 1). At 4 and 5

GeV/c, however, the cross section appears to fall to very low values in the

backward hemisphere, and our data in this region permit only upper limits to
-1

be placed on the elastic cross section. In Fig. 10 the data are plotted with 11

all negative pion points on one graph to emphasize the similarity in slopes

of the diffraction peak. In Fig. 11, a log-log graph is presented with all

four sets of data included for comparison with such theories as Serber's dif- I

fraction calculation.
1 0  It is apparent that the scatter in the data for

ItI > 1.0 (GeV/c)
2 precludes any statement concerning a fit to a power-law

formula. Finally, the data do not show evidence of a backward peak (about

1800), although at 3 GeV/c a slight rise in the cross section behind 900 c.m.

is not excluded.

V. DISCUSSION OF THE DIFFRACTION PEAK

A. Shape of the Diffraction Peak

From Figs. 6 through 9, or from Fig. 10 one can observe that the dif-

fraction peak is at least roughly exponential for ItI out to 0.8 (GeV/c)
2 .

A purely exponential diffraction peak such as that predicted by the simplest

Regge theory (Section II.B.3) would be described by

d/dn = exp(A0+Alt] . (27)

The test of the exponential nature of the diffraction peak is made quantita-

2
20i



tive in Table VI, where the parameters A0 and A, of Eq. (27) are tabulated.

These parameters were obtained by a weighted least squares fitting procedure.

For later use, (da/dW)0 = exp[A0] is also listed in Table VI. P(X2 ) is the

probability of obtaining a larger X2 than the X2 value obtained in the par-

ticular fit. The observation of the exponential nature of the diffraction

peak is confirmed for the interval 0 < It < o.4 (GeV/c) 2 for three of the

sets of data; only the 3.15 GeV/c n- p shows a low p(X2).

However, on extending the fits to values of Itl up to 0.8 (GeV/c) 2 it

is clear that the "tail" of the diffraction peak flattens out from (e.g.,

rises above) a purely exponential behavior. This is made more apparent from

the values of A1 fitted to the data in the interval 0.4 < Itl < 0.8 and

0 < Itl < 0.8, which are smaller than the values of Al fitted only to the

data within the interval 0 < Itl < 0.4. Thus the linear fit appears ade-

quate for the latter range of ItI, but is not as satisfactory for the larger

range of Itt. Only for the 4.95 GeV/c data is P(X2 ) > 0.01 for the linear

fit over the interval 0 < Itl < 0.8.

By adding a quadratic term, the data can generally be fit much better

over the larger range of ItI, so that in Table VII fitted quantities are

listed for the equation

da/dN = exp[Ao+Alt+A2 t 2 ) (28)

Figures 12 through 15 display the data plotted only to t = -1.4 (GeV/c) 2 ,

with the curves of Eq. (28) corresponding to values of the coefficients from

Table VII [0 < Itl < 0.8 (GeV/c) 2 ] plotted for comparison.
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While Eq. (28) is an empirical expression suggested by the discrepancies

of Eq. (27), the plausibility of such an expression is also suggested by the

arguments of Section II. Thus in the context of the simple Regge theory,

a(t) may be non-linear, p(t) may contain a dependence other than exp( t],

or the contributions of other poles may modify the t-dependence as in Eq. *1
(17).

From Tables VI and VII there appears to be little choice between Eqs.

(27) and (28) in the interval 0 < Iti < 0.4. However, the P(X2) is increased

significantly for the 4.13 and 2.92 (GeV/c) data by including the t2 term of

Eq. (28) over the interval 0 < Itl < 0.8.

The consistently poor fit of the 3.15 GeV/c data to Eqs. (27) and (28)

is not understood. Unless a systematic error entered into the data, either

there is an unusual statistical. fluctuation in some data points or the physics

at this energy is basically different. Comparison of the data curves and the

A parameters reveals that the 3.15 GeV/c data is at least qualitatively

similar to the other data.

Average values of A1 and A2 can be found by taking the values of the A

parameters for Eq. (28) fitted over the interval 0 < Itl I 0.8 as the most

significant, and by noting that there are no significant differences between

the data or the values 'of A1 . The average value of A1 for the four curves

is 9.6 (GeV/c) " 2 , and that of A2 is 3.3 (GeV/c) - 4 . Since the P(X 2 ) of ob-

taining the experimental values of A1 and A2 from these average values is

0.05 and 0.02 respectively, we cannot say that all the curves are charac- f
terized by the same A1 and A2. But we can use these average values for cor-
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{ parison with the average A1 of 7.9 (GeV/c)-2 obtained from Table VI for the

finterval 0 < ItI < o.4. These two averaged fits give

0 < Itt < 0.4 (GeV/c) 2 ; (do) (La exP[7.9t]= d
(29)

0 < It < 0.8 (GeV/c)2; da = d exp(9. 6 t + 3.3t2]

which serves to emphasize further that there is a substantial deviation from

the simple exponential when ItI is extended to 0.8 (GeV/c) 2 .

Of course the quadratic terms may still be important at smaller Itt; our

measurements do not go to small enough angles to allow exploration of this

possibility.

B. The Forward Scattering Cross Section

Table VIII lists the square of the imaginary part of the forward scat-

tering amplitude, (katot/4r) 2 , and the forward scattering cross sections

(da/dll) 0 obtained by the various fitting methods of Section V.A. The errors

given with the (do/dsl) 0 quantities are derived from the least squares fitting

procedure. At each energy an estimated overall normalization uncertainty is

also listed. For the n+ p data this error is large and precludes any mean-

Ii ingful comparison. The ratio = (da/dQ)o/(katot/4 T) 2 include the errors

on each quantity and the normalization error.

First we observe that the (da/dO)o values at a particular energy vary

according to the fitting method, the "quadratic" fits usually giving a higher

value than the "linear" fit. Considering just the n- p data we next observe
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I
that in eight out of nine cases the ratio 4= (do/dn)o/(k atot/4n)2 is greater I
than 1.00, indicating a real part to the forward scattering amplitude. Of

course in each case the error is such as to allow the ratio to be 1.00. A

weighted average over the data and over the three fitting methods results in

the following values for the ratio :

= 1.20±.05 for 4.13 and 4.95 data combined

= .12±.04 for all g- p data.

Therefore if the differential cross section behaves as an exponential in t

for small ItI, the IRe f(IO)12/ ir f()12 may be about 0.1 to 0.2 in this en-

ergy range. In order for the IRe f(0) 12 to be smaller, the differential cross -

section must flatten out a little for very small Iti.

If the method of Cronin 2 5 is followed, so that single integral dlsperskn rela- -.

tions are used to calculate the value of [Re f(O)]2, one finds that the
.i

[Re f(O) ]2 averaged over this momentum range is about 0.5 mb. As this yields

1.017, the measured 1.12±.04 is too high by 2.5 standard deviations. .1
This can be interpreted in three ways. First, the normalization of the

data may be wrong. Second, the exponential fopm, and particularly the use

of the quadratic term, may be wrong for very small ItI. Thus the linear

exponent gives an average a of 1.09±.06, which is lower than the average C

obtained when all the fitting methods are used. The third interpretation is

that the forward dispersion relations are wrong, but this involves such a I
fundamental relationship in field theory that much stronger evidence would be

required than is presented here. Therefore our preference for an explanation
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goes first to a systematic error in the normalization of the differential

cross section and second to the possibility of an incorrect form having

been used for da/dn at very small ItI.

h. It may be noted that the ratio& appears, from the data presented here,

to increase monotonically with incident pion energy. This same trend is

consistent with the value of determined in preliminary analysis of

2 GeV/c A- p data taken at the same time as these data and this trend is

also consistent with the results of Brandt et al.
8

C. The Total Elastic Cross Section

In Table IX we present the total elastic cross section according to the

various fitting methods used to erapolate the data to small angles. In each

case the elastic cross section is evaluated from the experimental data points

for all values of t greater than the minimum observable. The fittcd curves

are used only to estimate the cross section between these minimum measured

points and the point t = 0. We have also included in Table IX an elastic

cross section based on extrapolation to the optical theorem point at t * 0.

As a result of more careful normalization, extrapolation, and background

subtraction, the elastic cross sections of Table IX average a few percent

lower than the preliminary values given earlier. The total cross sections

given are from the smooth curve of Diddens et al. These values average

slightly higher than the ones obtained earlier;27 consequently the ratios of

elastic to total cross sections (averaging about 20% for the n- data) appear
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to be in somewhat closer agreement with the optical model proposed by Serber
0

(0.185 for n = 1) than was indicated earlier. But from Table IX it is clear

that in addition to normalization uncertainties, the exact value of the total

elastic cross section is sensitive to the manner in which we extrapolate to

t = 0. These data must be interpreted accordingly.

D. The Simple Optical Model Fit to the Diffraction Peak

The forward part of the diffraction peak was used to evaluate R and 1
(1-a) in the simple optical model for a partially absorbing nucleus. A

weighted least squares fit was used to evaluate R from the equation

do k2 Cto t
2 4 l_(kR. sin .)-

- (@i 4 L kR sine j

Then the quantity (1-a) was found from the equation

tot = 2(l-a)R
2 .

The results are given in Table X. The maximum kR sin 0 used was about 3.0,

corresponding to Itl of about 0.3 to 0.4 (GeV/c) 2 . Only the most forward

points were used because the simple optical model with a uniform opacity

drops below the experimental points for larger angles, making it impossible

to get any meaningful fit. For example, if at 2.92 GeV/c the next two points

are also used to obtain a value for kR, the kR changes from 6.25 to 6.1 and

the minimum X2 increases from 8.4 to 17.0. As there are three degrees of

freedom, this corresponds to a much worse fit.

I
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II The values of R are quite similar to those found at some other momenta

in g' p elastic scattering. Thus at 1.43 GeV/c, R = 1.08xlO "1 3 has been re-

ported;28 and at 5.17 GeV/c, R = 1.04x1O" 1 3 has been reported.29  Our average

1value for R for the n- p system is (1.04±.03)xl0"13 cm. The probability of

these values having come from the same true value is 20%.

The optical model prediction of Serber I0 cannot be tested easily by our

differential cross section data; the statistical accuracy of the data for

Itl > 1.0 (GeV/c) 2 is poor, and it is only for these large Itl values that

significant deviations between an exponential and a power law fit can be ex-

Ipected. Yet our data are sufficient to demonstrate that the differential

I cross sections for large Itl fall more rapidly for 4 and 5 GeV/c than for

3 GeV/c scattering. This is in disagreement with an optical model containing

no energy dependence. All the n- data are plotted in Fig. 11 on a log-log

Jscale.

E. The Variation of the Diffraction Peak Width

and Shape With Energy

While the simplest application of the Regge theory to the diffraction

peak through Eq. (19) may be inapplicable in principle, the exponential shape

of the peak allows one to use the parameterization of Eq. (20) as a rough

test of the variation of the diffraction peak width with energy. In a pre-

vious paper A1 was taken from our data and other published results, and it

was shown that there was no statistically significant evidence for a charge
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of A, with energy (specifically with Ins) from 3 to 16 GeV. The same con-

clusion holds for all the fits we have tried. We find no systematic change

in the various sets of exponential parameters with s and specifically we see

no shrinkage of the diffraction peak for small ItI. We may now compare our

average Al of 8.0±0.2 (GeV/c)
"2 for the 0.0 < ftl < o.4 (GeV/c) interval with

the recent measurements of Foley Et 1.,
2 of Yr p elastic scattering in the

7 to 17 GeV/c region and with the measurements of Brandt et al.,
8 at 10 GeV/c.

Over the Iti interval 0.2 to 0.4 (GeV/c) 2 the Brookhaven published graphical

data yield A1  7.7 (GeV/c) 2  and the Brandt data yield A1 = 7.5±0.3

2
(GeV/c) . The excellent agreement demonstrates that the statement of no .-

shrinkage made by Foley et al., can be extended down to 3.0 GeV/c. The con-

stancy of A1 over this entire energy range is rather remarkable.

Our three-parameter fit over the interval 0 < Itl < o.4 (GeV/c) 2 yields

average values of A1 = 8.9±1.0 and A2 = 1.2±1.8; over the interval

0 < Iti < 0.8 (GeV/c) 2 it yields A1 = 9.6±0.4 and A2 = 3.3±0.5. For this

same interval at 10 GeV/c, Brandt et al., gives A1 = 11.14±1.07 and

A2 = 8.9±2.8. Since these lO-GeV/c parameters are different from both sets

of ours, there seems to be a definite change of shape of the diffraction peak

over the 3 to 10 GeV/c region, although the average slope (using just a two-

parameter fit) does not change over this energy interval. While some of the

difference between the quadratic coefficients at 5 and 10 GeV/c may be due to

the data for very small Itl at 10 GeV/c, the deviations from an exponential

fit between the two sets of data at large ItI appear significant.
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j The original shrinkage concept in the Regge theory came from the energy

[dependence of the linear term in the exponent as shown in Eq. (20). In an

attempt to find a more subtle type of energy dependence we can write a gen-

1. eralization of Eq. (20), i.e., an expansion of Eq. (18) as follows:

dc = d(2t t  exp[( 1 t+y 2t 2 + ... ) + 2(ait+a2 t 2 + ... )Ins] . (30)dt (d~=0

Now there is no evidence for a1 + 0 in n- p elastic scattering and yet it is

-- strongly intuited that the slope of the Pomeranchuk trajectory at t = 0,

(da(t)/dt)t=o, should be positive.1 4 According to this idea, therefore, if

a, = 0, a 2 should also be quite small and the first substantial a term would

be a3, reducing Eq. (30) to

d = () exp[( Yt+Y2t
2+...) + 2 3 t 3 1ns] . (31)

dt dt 0

To see if Eq. (31) might be applicable, the data have been fitted to

do = exp [Ao+At+A3t 3] (32)
dt

2 2over the interval 0 < Itl < 0.8 (GeV/c) . The t term was left out so that

the statistical uncertainty in the A3 term would not be too large. The

1parameters are given in Table VII. The result is similar to the quadratic

fit in that there is no major change in the P(X2 ); and the 4.95 (GeV/c) A3

is smaller than the lower-momentum A3 values just as the 4.95 (GeV/c) A2 is

Ismaller than the lower-momentum A2 values. Thus there is no evidence either

for or against the use of the A3 t 3 term instead of the A2 t 2 term.

I2
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F. The Diffraction Peak and Large-Angle Scattering

as a General Function of s and t

In this section we shall treat more than the diffraction peak in order

to see how all do/dn behaves as a general function of s and t. First the

results are presented in graphical form in Fig. 16, which goes out to values

of Jt r= 2( eV/c)2. At this ItI the data change from giving a value for the

cross section to giving primarily upper limits. In Fig. 15, (4n/katot)
2  I

(da/di), which we shall refer to as the normalized differential cross sec- ]
tion, is plotted versus s for various values of t. The errors include the

statistical error from each measured point propagated through the interpola-

tion process and the normalization error, which is equivalent to an uncer-

tainty in (do/dn). At t = -0.1, -0.3, -0.5, and -0.7 (eV/c) 2 there is

generally a slight rise in the normalized differential cross section with

increasing s. As discussed in Section V.B, this same effect produces an in-

creasing ratio of the extrapolated (dc/dil)o to the optical theorem (da/dl)0

and can easily be due to an energy-dependent error in the normalization.

If the normalization is correct, then this effect is a slight broadening of

the diffraction peak without a change in the slope. By taking forward scat-

tering dispersion theory as correct, one implies that the shape of the dif-

ferential cross section at very small ItI is changing throughout the region. j
For t = -1.0 and -2.0 (GeV/c) 2 the normalized differential cross section

is clearly decreasing with s. At t = -1.0 it decreases by a factor of 2 in

a, going from 6.8 to 10.2 (GeV/c) 2 ; and at t = -2.0 it decreases by a factor I
of about 5 over the same interval. i
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j For another means of studying the entire differential cross section as

a function of s and t, we have made a weighted least square fit for the en-

tire range of Itl to the equation

= exp[Ao+Alt+A2t2+A3t3+A4t4 ]
dn

The results are presented in Table XI. Except for the 3.15 GeV/c data

the equation is a fair fit. In contrast, Eqs. (28) and (32), which use only

three parameters, are very bad fits in all cases. Comparing the different

sets of data, one finds as before that the A parameters are roughly the same

for all the data, but that the spread is outside statistics. In particular

we observe that

A, > A2 > A3 > A4

so that for Itl < 1 (GeV/c) 2 we can think of this as a converging expansion

of some function of t. Although we have produed & reasonable fit to all the

data out to large It l values, present theory provides no way to interpret the

parameters. At most, one can say that these parameters are certainly allow-

able in more complex forms of the Regge theory.

In comparing the graphical and parametric methods of examining the gen-

eral s- and t-dependence it is interesting to note that as the incident pion

momentum increases from 3.15 to 4. 95 GeV/c, A2 , A3 , and A4 all decrease. Now

for Itl > 1.0 (GeV/c) 2 these are the important parameters; consequently the

large Itl value scattering will tend to decrease as s increases, as is apparent

in Fig. 15. In addition, the parametric fits demonstrate that the decrease
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in the cross section with increasing energy is probably not due to a chance

cancellation of the odd and even powers of t in the exponential, but rather

to a decrease in all terms.

VI. DISCUSSION OF LARGE-ANGLE SCATTERING

A. Shape of the Large-Angle Differential Cross Section

and Existence of a Backward Peak

From the tables and graphs already presented it is clear that the gen-

eral character of the differential cross sections is a roughly exponential

drop to 1 or 2 (GeV/c) 2 four-momentum transfer, with the cross section at -

larger Itl either flattening or (at higher energies) continuing to fall. At

4.13 and 4.95 (GeV/c) our data primarily represent upper limits for Itl > 2

(GeV/c)2. Thus our entire data can be represented in terms of t-channel

processes through more complex application of Regge theory or through some -,

alternative. In particular, it does not appear necessary to invoke u-

channel processes (e.g., baryon exchange) in order to interpret this ex-

periment.

We may use our upper limits to the cross section at large angles to set

limits to the width or height of a possible backward peak in the differential I
cross section. Our data extend only to cos e = -0.93 and are sensitive to a

differential cross section of the order of 5 x10"3 mb/sr. The limits placed

on large-angle scattering by the present data and by other published data I
are summarized in Table XII, where do/dO for 0 > cos 9 > -1.0, da/da for the
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I backward steradian, and the maximum observed angle (center of mass) from each

experiment are tabulated. As an example, one may postulate a backward peak

which has the same width as the forward diffraction peak and is given by

'- = exp[Ao + Al(u-uo)]

where u0 is the value of u at 1800 and the differential cross section is a

function of 9' = 180*-Q. Our data indicate that in this case a backward peak

at 4.13 GeV/c would have to be less than 1/24 the height of the forward peak.

The broader peak suggested by Singh and Udgaonkar20 from the strip ap-

1. proximation is more strongly limited by the data, but the slightly narrower

peak obtained by the optical model approximation applied to 1800 (see Section

II and the Appendix) is not as strongly limited, in view of the maximum angles

y. observed in this experiment. Our data suggest that such a peak would have to

be less than 10$ of the forward peak. As stated in Section II, neither the

virtual nucleon and nucleon isobar excharge theory nor the Regge theory of the

I backward peak give a width prediction, so we cannot set a limit on those

particular theoretical predictions.

The bubble chamber measurements (which do extend to 1800) in ir p set

limits of 30 4b/sr and in n+ p set limits of 14 to 90 b/sr over our ener&

range; these limits are consistent with our data. Since the diffraction peak

is completely contained in the first steradian in this energy range and totals

about 6 mb, the total elastic cross section in any backward peak is, roughly,

less than 1/200 of the total elastic cross section for n- p and less than

1/70 for A+ p. Therefore, in comparison with the forward peak, the height

33



i i

of the backward peak is either very small or its width is very narrow. The

only data on this point come from the experiment on n+ p by Kulakov et al.30

using counters at 3.14 and 4.6 Gev/c. At 1800 they found dao/da of 0.92±0.47

and 0.38±0.24 mb/sr.

This experiment only measured do/dn over a solid angle of 0.002 ster-

adians about 1800 in the center of mass. From other measurements listed in

Table XII it is highly probable that the total backward elastic peak is less

than 30 mb. To reconcile these two numbers one must postulate a very narrow

backward peak, mostly lying behind cos 9 = -0.985 to -0.995.

The theoretical interpretation of such a peak is obscure. It is too 'I
narrow to be explained by the backward peak arising from the optical model.

It is also too narrow to be treated with present Regge theory, because it

lies in the region shown by Table I to correspond to small cos Ou. It is

too small for the simple nucleon exchange calculation given by Cook et al.,
7

although it may fit the unpublished calculation of Pomeranchuk.

It would seem wise to wait for further experimental education of this

peak before developing the theory further. The measurnement of large-angle

elastic scattering at these high energies is made difficult by the problem

of inelastic contamination, and the counter technique employed by Kulakov

et al.,3 0 seems particularly subject to this kind of error.

B. Energy Dependence of the Large-Angle Scattering

On the basis of the data in Table XII, only qualitative statements can

be made regarding the energy dependence of the elastic cross sections in the
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jbackward hemisphere. Below 2.5 GeV/c pion momentum, the existence of reso-

nances in the total pion-nucleon cross section has been established; these

resonances are probably the most important determinants of magnitude and

shape for the large-angle cross sections near the resonance energies.

The statistical model18 makes no predictions about the angular distri-

butions of the elastic scattering through this channel except that any dis-

tribution should be symmetric about 900 c.m. The energy dependence of large-

angle scattering predicted by the statistical model is an exponential multi-

plied by a factor such as s-l to give the probability of forming an inter-

mediate state. From the Regge theory of the t-channel, the a(t) for all

Regge trajectories should approach -1 for sufficiently negative t. This

would give rise to a differential cross section at large Itl such that

da/d , s - 4 in this region. The data at 3 GeV/c and the upper limits given

for the higher energies are consistent with either prediction, e.g., that

the cross section in the backward hemisphere falls rapidly to very low values

with increasing energy.

VII. COMPARISON OF PION-PROTON WITH PROTON-PROTON ELASTIC SCATTERING

Qualitatively, the p p differential elastic scattering resembles the

it p data presented above. A detailed comparison, however, reveals signif-

icant differences between the two processes. Available p p data in the sane

energy range as our v p data have been fit in the same manner as the v p

data. In Table XIII, the coefficients for the fit
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d = exp[A0 + Alt]; 0 < ItI < 0. 4 (eV/c) 2  (33)

and i
da exp[Ao + Alt + A2t

2 ]; 0 < ItI < 0.8 (GeV/c) 2  (34)

are given for the p p data. Figure 17 compares A1 for the two processes

(from the linear fit) versus s, where straight lines of the form A1 = C1 +C2 1ns

have been fit to the p p data and to the i" p data. A clear increase of A1

with s is evident for the p p data, such that A1 would have the same value

for n- p and for p p scattering at s of about 16 (GeV)2. In Fig. 17 data fit

to i- p scattering experiments at lower energies are also included where the

corresponding fitted quantities are given in Table XIV.

The n- p and p p diffraction peaks can also be compared by using the

"quadratic" fit of Eq. (34). Table XV presents the average values of A1

and A2 for p p and n- p over the s range 6 to 12 (GeV)2 . The quadratic fits

to ItI = 0.8 (GeV/c)2 again demonstrate the narrower J p diffraction peak,

although there is no significant difference in A2 values between the two -

processes. When the entire angular range is considered, however, further

significant differences in shape appear. In Fig. 18 the normalized differ-

ential cross sections of all the present n1 p data for ItI > 0.4 (GeV/c) 2

are plotted together with smooth curves for the p p scattering at s = 7.5

and 11.8 (GeV)2 . For ItI > 1.0 (GeV/c) 2, the Y+ p elastic cross section

appears consistently to be several times smaller than the corresponding p p.

It is thus clear that a- p and p p elastic scattering behave quite dif-

ferently in this region of energy.
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APPENDIX

We will derive formulas for the forward and backward peaks for the simpl-

est type of optical model. From (6) and (7)

L
1=0 -

Then

f~e = ~-) [~.(COB e) +S6L (Cos )] (A2) iTI
For 9 close to 0o, cos 9 := 1-(92/2), so that for forward scattering cos 9

is replaced by 1-(02/2) in (A2).

For e close to 1800 let 9' = 1800-0, so that 9' is small. Then

For the backward scattering (A2) then becomes ~

21k' f=') Y

(A3)

,/ L _(- ))LL 1 2)

Now, letting x be [1-(02/2)] in (A2) and. (-(9'2/2) ] in (A3), we note that I
(YLt(x) ( L+l)! (L-1)( L+2) (2:-) (Ll) (L-2) (L+2) (L+3) )2 I2

2( L-1) (1) (2) (2) (3)

(L-l) (L-2) (L-3) (L+2).(L+3) (L+4) (1-3 (1)¢(2)€(3)¢(2)¢(3)€(4) (!) +""
I38 U "



[ Then

Ii P~ix) ±LX) = L+ 1) ' (k2~ ~ (L+ 2) (L+ 3) ± (L-1) (L+2) (-X
2(L-1)! L / 2 2/k2j

+ (L+2) (L-1) (L+3)(L+), ± (L1(L-2)(L+2) L+3) (-x2

((L+2)(CL-l)(CL-2) (L+3)(CL44) (L+5) ± CL-i)(CL-2)(CL-3)(CL+2)(CL+3) CL+j±j>

Thus

t 6)9, 1CX) + 69L(x) = L+i) ![( + I(L+2)(2L+2)

+ L L+2 L-1) L+3) 2L+2)(_2
+12 2)

1. whereas +..

1.+ 12(L+2)(L-1)CL+,)(6) (-

I ~(L+2)CL (L -2) (L+3) (L+4~)(8) 2)+

Now we set L 1. and replace x by 1-(9 2 /2) or 1-(912/2).

Then

Ii &~l~x +(P~(x)= 2 L ( 2(4) (12)(16) (144J)(64~) .]
I39



and

LlL Lx) (24)(16) -(36) (63) + .A.]

Now .

=lx 11 2)(4) + (12)(16) -(A6) i
By setting ta=kR9 and using (A6), (Au), and (A2),

f(e) =~) ) J (kRG)j

The forward diffraction peak differential cross section is therefore

da (,_a) 2 R2 /0 2 (jl(kfg) ]2

_ 1a)2 2R4F~ ~e

Similarly, setting L91 kRO' and using (A5) and (A3),

= (-a () L(kR) F~-(kEGO/2)2
+ (kR@'/2)' 4 (kROI/2)6 +1

(2!) 2 (3! )2

We define

B(kRO') (kOI2 2 1
Then the backward peak is given by I

da/dbackward =(1-a)
2 R2 [B(kROI) ]2

40
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j Table I

Cos 0 at 4.0 GeV/c and 10.0 GeV/c in A p Elastic Scattering

for Particular Values of Cos 9 u

cs4.0 GeV/c 7( p 10.0 GeV/c v pCos u Cos 0 0 Cos 0 9

- 1.0 -1.000 1800 -1.000 1800

+ 1.0 -0.974 1670 -0.992 1730

+ 3.0 -0.925 1580 -0.987 1710

+10.0 cannot be reached -0.941 160 °

fI
iI
iI
II

i !i

I.I



Table II

Elastic Scattering Differential Cross Sections for 2.92 GeV/ c

A+ p; s = 6.38 (GeV)2, In s = 1.85 1
Ti

-t Fr-GVt -u -

Cos 9 da mb LCJ L r - F -
dc sr at Center at Center Lk atotj TO

of Interval of Interval

0.97 to 0.96 7.33 ±0.64 0.082 0.4654+0.0406

0.96 to 0.94 4.8o +0.33 0.118 0.3043+0.0210

0.94 to 0.92 3.81 +0.29 0.164 0.2419+0.0184

0.92 to 0.90 2.30 +0.21 0.212 0.1460+0.0133

0.90 to 0.88 1.62 +0.18 0.258 0.1028+0.0114 --A
0.88 to 0.86 1.03 +0.13 o.306 0.0654+0.0082

0.86 to 0.84 0.87 +0.13 0.352 0.0552+0.0082

0.84 to 0.82 0.71 +0.i2 0.400 0.0451+0.0076 -T

0.82 to 0.80 0.53 +0.11 0.446 0.0336+0.0070

0.80 to 0.78 0.39 +0.09 0.494 0.0248+0.0057

0.78 to 0.76 0.43 +0.10 0.540 0.0273+0.0063

0.76 to 0.74 0.27 +0.08 0.588 0.0171+0.0051

0.74 to 0.62 0.086+0.022 0.752 0.0055+0.0014

0.62 to 0.49 0.016+0.014 1.05 3.54 0.0010+0.00039

0.49 to -0.24 0.023+0.012 2.06 2.53 0.0015+0.00076

-0.24 to -0.46 0.035+0.021 3.17 1.41 0.0022+0.0013

-0.58 to -0.92 0.004+0.004 4.11 0.474 0.0002+0.0002

I
I



I Table III

Elastic Scattering Differential Cross Sect-ons for 3.15 GeV/c

v-p s = 6.81(Gev)2, In s =1.92

I FreV.GeVT

Cos 9 domb tLL c 47 do
dfl sr at Cenrec at Cente Lk crtotj dfl

of Interval of Interval

0.97 to 0.96 9.30 ±o.64 0.090 0.14554 +0.313

0.96 to o.914 6.15 +0.314 0.128 0.3012 ±0.0166

0.914 to 0.92 4.99 ±0.29 0.179 0.2444 ±9.01142

I0.92 to 0.90 3.15 ±0.23 0.231 0.15143 +c.0113

0.90 to 0.88 2.08 ±0.19 0.282 0.1019 +0.0093

0.88 to 0.86 0.96 +0.11 0.333 0.0470 +0.0054

0.86 to 0.84 0.64 +0.11 o.384 0.313 +0.0054

0.84 to 0.82 o.145 +0.09 0.1436 0.0220 ±0.0044

o .82 to 0.8 0.48+±0.09 0.1487 0.0235 +0.00144

*0.80 to 0.78 0.26 +0.07 0.538 0.0127 +0.0034

0.78 to 0.76 0.31 +0.08 0.589 0.0152 +0.0039

I0.76 to 0.66 0.069+0.022 0.7143 0.0054 +0.0011

0.66 to 0.56 0.36+0.019 0.999 0.0018 +0.00093

I0.56 to 0.37 0.036+0.017 1.37 3.65 0.0018 +0.00083

j0.37 to -0.13 0-019+0.010 2.25 2.76 0.00093+0.000149

-0.13 to -0.147 o.o +0 .007 3.31.69 000 +0.00034

1 -0.000 -.0000 0oo

-o4 o-.2 003+-0003 0.4 .674 0.00015 +0.00015I o-~0-003 -0.00015



Table IV

Elastic Scattering Differential Cross Sections for 4.13 GeV/c

it p; s = 8.65 (GcV) 2 , In L = 2.16

Cos Qda mb t I47 da
sr at Center Lt Center k

of Literval of Interval

0.98 to 0.96 11.39 +0.58 0.104 o.4514 +0.0230

0.96 to 0.94 5.92 +0.34 0.173 0.2346 +O.O135

0.94 to 0.92 3.30 +0.24 0.243 0.1308 +0.0095

0.92 to 0.90 1.96 +o.19 0.312 0.0777 ±O.0075 -

0.90 to 0.88 0.80 +0.12 0.382 0.0317 +0.0048

0.88 to 0.86 0.60 +0.10 0.451 0.0238 +0.0040

o.86 to 0.84 0.45 +0.09 0.520 0.0178 +0.0036

0.84 to 0.82 0.22 +0.06 0.590 0.0087 +0.0024

0.82 to 0.80 0.21 +0.06 0.659 0.0083 +0.0024

0.80 to 0.76 0.15 +0.05 0.763 0.0059 +0.0020

0.76 to 0.72 0.08 +0.04 0.902 0.0032 +0.0016

0.72 to 0.60 0.013+0.008 1.18 0.00052+0.00032

o.6o to 0.48 0.017+0.012 1.60 5.26 o.ooo67+0.ooo48

o.48 to -0.26 0.005+0.003 3.09 3.77 0.00020+0.00012

-0.26 to -0.48 0.000+0 00 5  4.75 2.10 0.00000+0 .
00 020

-0.000 -0.00000

-0.48 to -0.93 0.000+0.003 5.92 0.940 0.00000+0.00012
-0.000 -0.00000

I

II
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j Table V

Elastic Scattering Differential Cross Sections for 4.95 GeV/c

v- p; s - 10.19 (GeV)2, in s = 2.32

Cos 9 damb 7[ d -

dil sr at Center at Center d3L of Interval of Interval

0.98 to 0.96 12.98 +0.65 0.127 0.4453+0.0223

0.96 to 0.94 6.58 +0.30 0.212 0.2257+0.0103

0.94 to 0.92 3.06 +0.22 0.296 0.1050+0.0075

0.92 to 0.90 1.81 +0.18 0.381 0.0621+0.0062

0.90 to 0.88 1.20 +o.14 0.466 0.0412+0.0048

0.88 to 0.86 0.62 +0.10 0.550 0.0213+0.0034

0.86 to 0.84 0.26 +0.07 0.635 0.0089+0.0024

0.84 to 0.82 0.18 +0.06 0.720 0.0062+0.0020

0.82 to 0.80 0.068+0.030 0.804 0.0023+0.0010

0.80 to 0.78 0.034+0.025 0.889 0.0012+0.00086

0.78 to 0.74 0.000+.014 1.02 0.000+ ° ° ° °48
-0.000 -0.000000

0.74 to 0.57 0.000+0 015  1.46 0. 0 0 0 + 0 0 0 0 51

-0.000 -0.00000

0.$7 to 0.38 0.00+0.oo8 2.22 6.17 +0.00027
-0.000 387 4.52 +0.00007

0.38 to -0.21 0.000+0 .002  3.87 4.52 0.0000 0 7

-0.000 -0.00000

-0.21 to -0.55 0.000 +0.008 5.84 2.55- .00 +0.00027
-0.000 0 .0000000007
+ 02 o 0 0 .006 +04255" -. 0020

-0.55 to -0.93 0.00000oo 7.37 1.02 0.o0000o 00000

I000-.00
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j Tablt VII

Values of the Coefficients in the Expressions do/dO . exp (Ao+Alt+At
2

)

Pit to the Data Over Different Intervals of Four-Momentum Transfer, t

System X+ p W" p a" p a" p

Plab (0eV/c) 2.92 3.15 4.13 4.95

0 < ItI <0.4 do ab 16.9 +3.0 14.8 +2.2 29.6 +4.6 41.2 +10.6

(GeV/c)

2

A0  2.8 -0.2 2.7 -+.2 3.4 +o.2 3.7 + 0.2

I. A1 (GeV/c)'
2  

11.0 +1.8 5.2 +1.4 9.5 ±1.4 97 - 2.3

A2 (0eV/c)
"4  

7., ±3.8 -7.4 +2.8 1.4 +2.7 3.6 + 4.9

P (x
2 )  

0.o 0.15 0.05 0.40

0 < Iti <0.8 14.2 +1.4 22.0 +2.2 35.7 ±3.5 34.3 + 4.0

AO  2.7 40.5 3.1 +0.1 .6 +0.1 3.5 - 0.1

A1 (eV/c}r
"  

9.2 10.7 9.6 +0.7 11.5 +0.7 8.1 + 0.7

A, (GeV/c)
"4  

4.o ±1.1 2.9 +1.1 5.5 _0.9 0.9 +1.0
P (x2) 0.20 <10.o 0.20 0.30

0 < ItI <1.0 lb 13.5 ±1.3 22.6 +1.9 3.6 +2.8 32.6 + 3.4

(GeV/c)
2

AD 2.6o +o.o9 3.12 ±0.08 3.51 4o.o8 3.48 + 0.1

A1 (GeV/c)
"2  

8.8 +0.7 9.9 ±0.6 U.-.0 +0.5 7.6 ± 0.7

A2 (0eV/c) 3.2 ±1.0 3.2 ±0.8 4.7 +0.7 0.3 ± 0.9

P (x
2
) 0.10 <<0.01 0.10 0.40

0O Iti <0.8 ab 12.5 ±1.0 20.9 +1.6 30.9 +2.3 32.8 + 2.9.~~ ~ (0Vo), oBr - --
(0eV/c)

2  0S
AD 2.53 40.08 3.04 4+0.08 3.43 o.o8 3.49 _ 0.9

A, (OeV/r)
" 2  

7.8 +o. 8.9 +o.4 9.7 ±0. 7.7 ± 0.4

A3 (OeV/c)
6  

- 3.1 ±1.0 - 3.0 ±1.2 - 4.7 ±0.7 - 0.5 ± 0.8

P (x2) 0.05 0.01 0.30 0.30

0 < ItI < 1.0 11.9 !9.9 20.4 +1.3 28.1 +1.8 31.6 + 2.6

(0 .,V/0)
2  0

AD 2.48 ±0.07 3.02 ±0.06 3.34 ±0.07 3.45 ± 0.08

A1 (GeV/c)
"2  

7.5 ±0.4 8.7 ±0.3 9.1 ±0.3 7.4 + 0.4
A3 (GeV/c)

"
6 - 2.1 +0.8 - 2.5 ±0.6 - 3.2 ±D.5 0.04 + 0.6

Sp ( 2) 0.05 <<0.01 0.10 0.40

0 < Itl < Itl Itl Ia(x v/)
2  

4.1 4.55 5.9 7.4
(GeV/.) 2  

IdNl(0V/)
2

9.0 0 .5 13.1 ±0.6 16.2 +0.7 23.6 + 1.2

AD 2.19 ±0.05 2.57 ±0.05 2.78 _0.05 3.16 + 0.0

A, (0eV/)
"2  

6.1 ±0.2 6.4 ±o.5 6.3 ±o.4 6.3 ± 0.2

, (GeV/.) - 0.308.0.017 - 0.286o.015 - 0.156.0.006 - 0.1OO_ O.00

P (X2) << 0.01 << 0.01 << 0.01 <0 .01I.



Table VIII 1
Total Cross Sections, at, Values of (kot/4A )2 , and Values of (do/dl) at

0 Extrapolated According to the Various Fits of Tables VI and VII i
(The ratio, k, of the extrapolated value of (do/dfl)0 to (kat43t)

2 is

tabulated in each instance. The total cross sections are taken from

Refs. 26 and 27.)

System 71+ p p p p *

Plab (0eV/c) 2.92 5.15 4.13 4.95

tta (m)28.7 +0.5 51.3 +0.5 29.9 +0.5 29.1 + 0.5 7

k (cm1 ) o.549x101 0.574x10l 0.668x10 0.739xl0O

(ka) 2mb 15.8 +0.5 20.4 +07 25.2 +0.8 29.2 + 1.0

normalization uncertainty +30% +8% +8% 8

exp( mb+lt ~o'- 12.4 +o.9 21.0 +1.3 27.6+1.8 35.2 + 2.7

0 < ItI < 0.4 (0eV/c)2  0.79+0.24 1.03+0.11 1.09+0.11 1.14+ 0.14

exp (A0+Alt+A2t
2) 'dk17 16.9 +3.0 14.8 +2.2 29.6 +4.5 41.2 +10).1

0 < It I <0o.4 (GeV/c) 2  / 1.07+0.37 0.-72+0.17 1.17±D.20 1.41+ 0.35

ex kA~+~ 2) \d b-5Z 14.2 +1.5 22.0 +2.2 5.7 +3.4 54.3 + 3.9

0 < It I <0.8 (GeV/c) 2 fi 0.90+0.29 1.03+0.14 1.4i+o.lb 1.13+ 0.14



!
(Table IX

Total Cross Sections, at, and Total Elastic Cross Seciions, aelastic, Where

I 0elastic is the Integral Under the Data Points Plus the Contribution from

t a 0 to the First Data Point Taken According to the Fits of Taoles VI and VII

(In the case of the i(+ p data, where normalization is less certain,

a value of Gelastic is also given in which the data are scaled so that

the linear fit passes through the optical theorem point (katJ4jt)2 .)

System 7+ p i- p Ir p i- p

i Plab (GeV/c) 2.92 3.15 4.13 4,95

atotal (mb) 28.7+0.5 31.3±0.3 29.9+0.5 29.1+0.5

aelastic (mb) for:

1. eAp (Ao+Alt) fit:

O <Itj <0.4 (GeV/c)2  4.6+1.5 6.2+0.7 5.9+0.6 6.5+0.7

aFelastic/ototal 16% 19.3% 19.7% 22.7%

2. exp (Ao+Alt+A2 t
2 ) fit:

0 < Itl < 0.8 (GeV/c)2  4.8+1.0 6.4+0.3 6.3+0.8 6.5+0.8

C %lastic/ytotal 16.7% 20.4% 21.0% 22.4%

i 3. fit to optical point

exp (Ao+Alt)

0 < Itl < 0.8 (GeV/c) 2  5.1+1.0 6.1+0.7 5.6+o.6 6.1+0.7

aelastic/atotal 17.8% 19.5% 18.7% 21.0%

4. Normalization shifted to

allow linear fit to pass

through optical point 5.9+1.0

aelastic/atotal 20.6% 1



Table X

Nuclear Radius O and Opacity (1-a) Calculated from a Simple Optical

Model to Fit to the Data at Each Energy

System I+ p ir p ir p A" p

Plab (GeV/c) 2.92 3.15 4.13 4.95

kR 6.25+0.3 6.25+0.3 7.05+0.3 7.25+0.3

R (10-13 cm) 1.14+0.O5 1.09+0.05 1.05 +0.05 0.98+0.04.-

(1-a) 0.35+0.04 0.42+0.04 0.430+.04 0.47+0.04

2I

I

I



I Table XI

jValues of the Coefficients in the Expression

do/d = exp (Ao+Alt+A2t2+A3t3+A4 t4)

1Fit to the Data Over the Ranges of Four-Momentum Transfer t Indicated

System A+ p Ir p 7" p p

Plab (GeV/c) 2.92 3.15 4.13 4.95

AO 2.65+.o9 3.25+0.o8 3.50+0.08 3.64_+.08

A1 (GeV/c) 2  9.3 +0.7 11.2 +0.6 11.0 +0.5 8.9 +0.5

A2 (GeV/c ) 4  4.4 +1.2 6.2 +1.1 5.5 +0.7 2.0 +o.6

A 3 (OeV/c) " 6  0.7 +0.6 1.5 +0.5 1.2 +0.2 O.1 +0.6

A4 (GeV/c) "8  0.02+0.08 0.13+0.08 0.09+0.02 0.00+0.01

P (x2 ) 0.20 <<0.01 0.15 0.05

Maximum Itl (GeV/c)2  4.1 4.4 5.9 7.4

I.
I



Table XII ii
Let& for w" p ]lastic Scattering In the Backward (c.a.) Hemisphere,

and In the Steradian Centered at 0 - 1.80' from Various Experiments Including the Present One j
(All cross sections are in jb/sr.)

Incident Pion ub/or for the Last
System Laboratory ob/sr Steradian In c.. sm" ReferenceMomentum -1.0 < coo a <0 System (c.m.)

(0eV/c) -1.0 <coo 9 < -0.841

a- p 1.43-1.51 300t 60 300t130 180* a,b

s "p 2.0 15 0 12 4

+20

"p 2.5 106
+
0 149. b

-30

eP 2.8 < 30 i8o* c 1
e-p 2.8 100+ 40 1801 d

a-P 3.15 4+ 10 84 10 157' This exp..- 3 - 8

s p 4.13 <s < 9 158 This exp.

" p 4.95 <6 <10 158" This exp.

, p 7.o-8.0 < 30 180. e

X+ p 1.5 760t150 65o.00o 18. f

-300

X+P1.69 32+ 30 250+150 164' 9

0P2.0 200+ 40 40. 40 48. f

,+ p 2.5 7030 80+ 60 162' f

'V+p 2.8 < 14 180' h

2 2.8 6. 6 180. 1

*+ p 2.92 18. 11 1311 17 This exp.

s1+ p 7.0-8.0 < 90 180' a

7'£~p 3.14 at 180' dq/dQ . 920±470 4b/or

W+ p 4.6 at 180* do/dfl. 3604.240 I+4/er

a. N. Chretlen at al., Phy. Rev. 10- 383 (1937).

b. K. W. tI at &I- Phys. Rev. lettere y, 125 (1961).

c. Yu. D. Bayukoy tm. Soviet Physics-JTP 14, 1432 (1962).

d. L. P. Kotenko at al., Soviet Physice-JZ'P , 800 (1962).

a. R. A. Aripov !11a1., Soviet Physics-3M 14 946 (1962).

f. V. Cook at al., Phys. Rev. 1&0 762 (1963).

g. J. A. Holland, IJCRL Report 10378 (1962).

h. Yu. D. Bayukov !t !l., Soviet Physci-JV' 14, 40 (1962). (This is a r + n . t" + n mesurement and

charge independence Is assumed.)

1. Yo. 1. Beyukov t al., Soviet Physic- 14, 729(1962).

J. B. A. Ruakov at al., Proceedings of the International Conference on 8a.-herw Physics at CERI

(cUm, Geneva, 1962), p. 584.
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TABLE XIV

Values of the Coefficient A1 in the Expression da/dn = exp (Ao+AIt)

Over the Range of Four-Momentum Transfer 0 < Itl < 0.4 (GeV/c)2

for Lower Energy i- p Elastic Scattering Experiments I

System 7" p 7" p 7f-p 1

Plab (GeV/c) 1.34 1.43-1.51 2.0
-i

A1  7.3+0.4 7.3+0.6 8.7_-0).5

p (X2) 0.25 0.45 0.20 [

s (GeV)2  3.41 3.64 4.65

In s 1.23 1.29 1.54

Reference EL bc b, d

a. L. Bertanza et al., Nuova Cimento 19, 467 (1961). --

b. K. W. Lai, L. W. Jones, and M. L. Perl, Phys. Rev. Letters 1,

125 (1961).

c. M. Chretien et al., Phys. Rev. 108, 383 (1957).

d. V. Cook et al., Phys. Rev. 123, 320 (1961). --

i

I
I

I!
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I Table XV

Average Values of A1 and A2 for Fits to All the Data TEtbulated Above

for the Expression do/dl = exp (Ao+Alt+A2t
2 ) Over the Range of

Four-Momentum Transfer 0 < Itl <0.8 (GeV/c)
2

I System p p - p

A1 (GeV/c )-2  7.9±0.2 9.6+o.4

A2 (GeV/c) " 4  2.7+0.3 3.3±0.5

I
I
I
I
I
I
I
I
I
I
I

Ii
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[FIGURE CAPTIONS

Fig. 1. The functions [Jl(kRg)/kRg] 2 and [B(kRG)] 2 vs. kR9.

Fig. 2. Feynman diagrams for backward elastic pion-nucleon scattering for

the cases (a) n+ p ) g+ p with neutron exchange, (b) 7" p - Tr p with doubly-

charged 3/2-3/2 nucleon isobar exchange, and (c) r p it p with one nucleon

and two or more pions exchanged.

Fig. 3. Schematic, scale diagram of the experimental arrangement. sCa-sc6

are spark chambers, the black bars labelled C are coincidence scintillation

Icounters, and those labelled A are anticoincidence counters. The axial

cylinder indicates the location of the 18-in. liquid hydrogen target.

IFig. 4. Photograph of an elastic scattering event taken from the data film.

Here 18 views of the 9 separate spark chambers combined on one film may be

Iseen. The liquid hydrogen target lies behind the fiducial plane containing
the roman numerals.

Fig. 5. Kinematics of laboratory scattering angles for 4.0 GeV/c elastic

it p scattering, with a typical data point shown to illustrate the meaning

I of the distance D. The two possible curves for a given measured pair of

angles are shown where, for curve I, (A = Q , (B = 9P; and for curve II,

GA = Op and OB = On"

[I
Ii



FIGURE CAPTIONS (Continued)

Fig. 6. Elastic scattering differential cross sections for 2.92 GeV/c

n+ p. The errors shown are statistical. An additional normalization un-

certainty of +30%, is not indicated. The open circle at t = 0 is the opti-

cal theorem prediction. J

Fig. 7. Elastic scattering differential cross sections for 3.15 GeV/c

n- p. The errors shown are statistical. An additional normalization un-

certainty of ±8% is not indicated. The open circle at t = 0 is the opti-

cal theorem prediction.

Fig. 8. Elastic scattering differential cross sections for 4.13 GeV/c A- p.

The errors shown are statistical. An additional normalization uncertainty

of ±8% is not indicated. The open circle at t = 0 is the optical theorem

prediction.

Fig. 9. Elastic scattering differential cross sections for 4.95 GeV/c 7- p.

The errors shown are statistical. An additional normalization uncertainty

of ±8% is not indicated. The open circle at t = 0 is the optical theorem

prediction.

Fig. 10. Normalized elastic differential cross sections for the A- p data

superposed on one graph. Error bars are not shown in order to clarify

close-lying points.

I
I
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I FIGURE CAPTIONS (Continued)

1. Fig. 11. Normalized elastic differential cross sections for all data from

- this experiment plotted on a log-log scale in order to examine possible

power law dependence. Error bars are not shown.

Fig. 12. Elastic scattering differential cross sections for 2.92 GeV/c A+ p

I over a limited t range together with the fitted curve do/dil = exp(Ao+Alt+

At 2 ) over the range 0 < Itl < 0.8 (GeV/c) 2 . The open circle at t = 0 is

the optical model prediction.

Fig. 13. Elastic scattering differential cross sections for 3.15 GeV/c 1( p

over a limited t range together with the fitted curve da/dn = exp(Ao+At+

2 (0Vc 2. pncrl tt 0iAkt) over the range 0 < Itl < 0.8 (GeV/c) . The open circle at t = 0 is

the optical model prediction.

Fig. 14. Elastic scattering differential cross sections for 4.13 GeV/c Y- p

-- over a limited t range together with the fitted curve da/da = exp (Ao+Alt+

2 2
A2t) over the range 0 < Itl < 0.8 (GeV/c) . The open circle at t = 0 is

the optical model prediction.

Fig. 15. Elastic scattering differential cross sections for 4.95 GeV/c n" p

over a limited t range together with the fitted curve da/da = exp(Ao+Alt+

A2t
2) over the range 0 < Itl < 0.8 (GeV/c) 2 . The open circle at t = 0 is

the optical model prediction.

tI



FIGURE CAPTIONS (Concluded)

Fig. 16. Normalized differential elastic scattering cross sections for the j
three n" p data sets plotted vs. Ins, with straight lines fitted through points

of the same four-momentum transfer. The points are interpolated from the

data of Tables III, IV, and V, with error bars indicated which include sta-

tistical errors of the data as well as interpolation and normalization un-

certainties.

Fig. 17. The coefficient Al(GeV/c)'2 vs. Ins from linear fits to p p and n p

elastic scattering data according to da/da = exp(AO+Alt) in the range

0 < It! < 0.4 (GeV/c) 2 . The straight lines are fitted to the plotted points --

for p p and 7( p scattering considered separately.

Fig. 18. Data for x p normalized elastic scattering differential cross sec-

tion for Iti > 0.4 (GeV/c) 2 with smooths curves from p p elastic scattering

diffenential cross section at s = 7.5 and 11.8 (GeV)2 plotted for comparison.
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